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Abstract
We discuss how the CP violating phase δ and the mixing angle θ23 can be measured precisely

in an environment where there are strong correlations between them. This is achieved by paying

special attention to the mutual roles and the interplay between the appearance and the disap-

pearance channels in long-baseline neutrino oscillation experiments. We analyze and clarify the

general structure of the θ23 − θ13 − δ degeneracy for both the appearance and disappearance chan-

nels in a more complete fashion than what has previously been discussed in the literature. A full

understanding of this degeneracy is of vital importance if θ23 is close to maximal mixing. The rela-

tive importance between the appearance and disappearance channels depends upon the particular

setup and how close to maximal mixing Nature has chosen the value for θ23. For facilities that

operate with a narrow band beam or a wide band beam centered on the first oscillation extremum,

the contribution of the disappearance channel depends critically on the systematic uncertainties

assumed for this channel. Whereas for facilities that operate at energies above the first oscillation

extremum or at the second oscillation extremum the appearance channels dominate. On the other

hand, for δ we find that the disappearance channel usually improves the sensitivity, modestly for

facilities around the first oscillation extremum and more significantly for facilities operating at an

energy above the first oscillation extremum, especially near δ ∼ ±π/2.
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I. INTRODUCTION

The three flavor mixing angles in the lepton sector are all measured now and the next
step is to measure the CP violating phase δ [1]. It would be the last step, aside from deter-
mination of the neutrino mass hierarchy, to complete our understanding of lepton mixing
in the standard three generation scheme. Lepton CP violation is one of the indispensable
ingredients for leptogenesis [2] which could explain baryon number asymmetry in the uni-
verse.

At the same time neutrino physics is entering the precision era. Precision will help suc-
cessful model building in the leptonic sector, which eventually should lead to the resolution
of the so-called flavor puzzle. Fortunately, θ13 will be soon determined accurately by the
Daya Bay and the other reactor experiments [3–5], which is free from the uncertainties on θ23
and δ [6]. Given the high accuracy of θ12 measurement by the solar [7] (see also e.g., [8] for
a review on results from solar oscillation experiments) and the KamLAND [9] experiments,
which may be even more improved at the JUNO [10] or RENO-50 [11] experiments, θ23 will
be the least precisely known mixing angle. Then, the uncertainty of θ23 could be one of
the dominant sources of uncertainty for the measurement of δ, in addition to statistical and
systematic ones.

Up to now, it is generally assumed that θ23 will mainly be determined through νµ disap-
pearance measurements, and δ is to be measured by νe and ν̄e appearance measurements,
possibly simultaneously with θ13, or with a given measured value of θ13 by reactor experi-
ments. However, it turns out that the problem of determining θ23 and δ simultaneously is
not that simple.

If θ23 is close to maximal mixing, i.e. sin2 2θ23 >∼ 0.96 (a value to which the experimental

results seem to be converging), the determination of sin2 θ23 will be difficult because the two
allowed regions for θ23 (the true solution and one clone) merge together [12]. As a result,
the final allowed region for sin2 θ23 will span both the first and second octants of θ23. It was
shown that the νe and ν̄e appearance measurements by themselves, no matter how accurate,
produce a continuous “tusk shaped” degeneracy line, parameterized by the value of δ, in
sin2 θ13 − sin2 θ23 space [6]. Though the three-dimensional θ23 − θ13 − δ parameter space is
squeezed by the reactor measurement of θ13 (yet with finite resolution), we still have to deal
with the problem of determining θ23 and δ simultaneously [13]. We will see that it suffers
from a parameter degeneracy involving θ23, θ13, and δ.

We utilize the following four experimental setups to illuminate the characteristic features
of this degeneracy: (1) T2HK [14] for a representative case of setups whose neutrino spectrum
is peaked near the first vacuum oscillation maximum (VOM), such that ∆31 ≡ (m2

3 −
m2

1)L/4E = ±π/2, where L is the distance to the detector and E is the neutrino energy,
(2) LBNE [15] for a representative case of setups with wide-band neutrino beams around
|∆31| ∼ (2 ± 1)π/4, (3) Neutrino Factory (NF) [16, 17] for a representative case of setups
at higher energies than VOM, |∆31| ∼ π/4, and at long baseline with sizable matter effect,
and (4) ESSνSB [18, 19] for a representative case of setups with neutrino spectrum peaked
near the second VOM, |∆31| = 3π/2.
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The paper is structured as follows. First, we aim at illuminating the structure of the
parameter degeneracy in the three-dimensional θ23− θ13 − δ space, which will be denoted as
the general θ23− θ13 − δ degeneracy. Despite that the intrinsic θ13-δ degeneracy [20] (and to
less extent the intrinsic θ23-δ one [13]) multiplied with the discrete θ23 octant degeneracy [21]
(see also [22]) has been discussed extensively in the literature, to our knowledge, its full
structure has never been addressed in a complete fashion. A detailed discussion of this
degeneracy will be presented in Sec. II. Then, in the rest of the paper, we study how well can
θ23 and δ be measured at future neutrino oscillation facilities, focusing in particular on the
relative importance of νµ disappearance vs. νµ → νe (ν̄µ → ν̄e) appearance measurements1

for a precise determination of sin2 θ23 and δ. This will be discussed in Secs. IV and V,
respectively. Finally, we summarize our results and present our conclusions in Sec. VI.

II. GENERAL θ23 − θ13 − δ DEGENERACY OF THE APPEARANCE AND DIS-

APPEARANCE CHANNELS

Here, we discuss the general structure of degeneracy involving θ23, θ13, and δ which is
encountered in the measurement of these parameters. Our aim in this section is to illuminate
the nature of this parameter degeneracy but not to go deeply into discussing how it can be
resolved. However, we do expect that our discussion will be useful to formulate the resolution
of this degeneracy. While our discussions in this section are meant to be pedagogical in
nature, many of the features of this general θ23 − θ13 − δ degeneracy are entirely new.

For the sake of simplicity, we will assume throughout this paper that the neutrino mass
hierarchy is known to be the normal hierarchy. In the case of unknown mass hierarchy, the
number of allowed solutions would be doubled since the clone solutions would also appear
for the wrong mass hierarchy [23]. The extension can be done in a straightforward manner.
Finally, the inclusion of matter effects complicates the discussion without adding too much
to the understanding. Therefore we will turn them off in the rest of this section.

A. Observables and Overview

In this paper, we consider the following four observables in discussing the determination
of θ23, θ13, and δ:

1. Pµe(θ23, θ13, δ) and P̄µe(θ23, θ13, δ): the appearance oscillation probabilities2 for νµ → νe
and ν̄µ → ν̄e respectively. For these probabilities there is a continuous degeneracy in

1 Here, and in the rest of this work, we denote the appearance channels for the super beam experiments

with the implicit understanding that for the Neutrino Factory or Beta Beam experiments the appearance

channels are νe → νµ and its CP conjugate.
2 Here only the variables which have important effect in our discussion are shown as arguments of the

oscillation probabilities. Explicit expressions for the oscillation probabilities will be given below.
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the three variables θ23, θ13 and δ. We will refer to this degeneracy as the “θ23− θ13− δ
appearance degeneracy.”

2. Pµµ(θ23, θ13): the disappearance oscillation probability for νµ → νµ. For this probabil-
ity there is a continuous degeneracy in the two variables θ23 and θ13. We will refer to
this degeneracy as the “θ23 − θ13 disappearance degeneracy.”

3. P̄ee(θ13): the disappearance oscillation probability for ν̄e → ν̄e. There is no degeneracy
in this channel since cos2 θ13 is not small and therefore θ13 is determined unambigu-
ously. (See discussion after Eq. 3.)

In this section we restrict ourselves to the analytic treatment of the degeneracy assuming
measurements of the above observables for a fixed neutrino energy E. Since there are four
equations for the three variables, the system is, in general, over constrained and in principle
there is no degeneracy if each measurement is precise enough except at possible isolated
values of the neutrino energy. However, degeneracies may appear if the measurements are
not accurate enough.

Let us start by discussing what has been addressed in the literature up to now regarding
the degeneracies associated with θ23 − θ13 − δ .

(a) If a νµ disappearance measurement of sin2 2θ23 is sufficiently accurate to determine θ23
(up to its octant), then a set of νe and ν̄e appearance measurements would give two
allowed solutions for (θ13, δ): the true solution and a degenerate one, which has been
referred to as “θ13 intrinsic degeneracy” [20]. Moreover, one would get two solutions
for each value of θ23; thus, this degeneracy is fourfold (eightfold if we consider that
the sign of ∆m2

31 is unknown).

(b) If the accuracy in determining sin2 θ13 overwhelms that of sin2 θ23, which is more or
less the case after the reactor measurement of θ13, a set of νe and ν̄e appearance
measurements would give two allowed solutions for (θ23, δ): the true solution and a
degenerate one, which has been referred to as the “θ23 intrinsic degeneracy” [13]. In
this case, the degeneracy is twofold excluding the ambiguity of the mass hierarchy.

In the first case, (a) above, the resultant fourfold degeneracy has been described as a direct
product of the θ13-intrinsic and the θ23 octant degeneracies. Whereas the second case (b) is
a θ23-intrinsic degeneracy which could in principle be resolved by an accurate determination
of sin2 θ23 from a νµ disappearance experiment. However, if θ23 is near maximal mixing
(∼ π

4
) this is challenging due to the Jacobian involved in translating the measured variable

sin2 2θ to sin2 θ.

The general θ23 − θ13 − δ degeneracy we discuss here is best considered to be made up of
two separate degeneracies: one associated with the appearance channels, the θ23 − θ13 − δ
appearance degeneracy; and the second associated with the νµ disappearance channel, the
θ23−θ13 disappearance degeneracy. Both these degeneracies are continuous in the associated
variables and will be illuminated in more detail in the following subsections.
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B. Appearance Channels and the θ23 − θ13 − δ Appearance Degeneracy

We start by describing the νe and ν̄e appearance measurements to understand the struc-
ture of θ23 − θ13 − δ appearance degeneracy. We will show that both the θ23 and the θ13
intrinsic degeneracies can be identified as particular projections of this appearance degener-
acy.

The νe and ν̄e appearance oscillation probabilities can be written as

P (νµ → νe) = (s23 sin 2θ13)
2A2

⊕ + 2ǫ (s23 sin 2θ13) (c23c13)A⊕A⊙ cos (δ +∆31)

+ ǫ2(c23c13)
2A2

⊙,

P (ν̄µ → ν̄e) = (s23 sin 2θ13)
2 Ā2

⊕ + 2ǫ (s23 sin 2θ13) (c23c13) Ā⊕A⊙ cos (δ −∆31)

+ ǫ2(c23c13)
2A2

⊙, (1)

where ∆ij ≡
∆m2

ij
L

4E
, ǫ ≡ ∆m2

21

∆m2

31

≃ 0.03. The A functions in (1) are defined3 as

A⊕ ≡
(

∆m2
31

∆m2
31 − a

)

sin

[

(∆m2
31 − a)L

4E

]

,

Ā⊕ ≡
(

∆m2
31

∆m2
31 + a

)

sin

[

(∆m2
31 + a)L

4E

]

,

A⊙ ≡ sin 2θ12

(

∆m2
31

a

)

sin

(

aL

4E

)

= Ā⊙. (2)

Here, a = 2
√
2GFNeE, where GF is the Fermi constant, Ne is the electron density in matter

and E is the neutrino energy.

1. The Appearance Degeneracy and the relationship to the Intrinsic Degeneracies

If we solve Eq. (1) for θ23 and θ13 by eliminating δ at a given neutrino energy E and
a baseline L, a curve on sin2 θ13 vs. sin2 θ23 plane results. An example of such a curve is
drawn in vacuum in the left panel of Fig. 1 by varying δ for a setup with L = 295 km and
a neutrino energy of 1 GeV. That is, if we set up the problem so that we obtain solutions
for θ23 and θ13 by measurement of P ≡ P (νµ → νe) and P̄ ≡ P (ν̄µ → ν̄e) at a certain value
of energy, we have solutions on any points on the curve; the degeneracy is continuous. In
other words, because of the freedom of adjusting θ13 and θ23 to reproduce the measurement
points (P , P̄ ), the solutions are in fact not only at the discrete points but on a continuous
line parameterized by δ e.g., θ23 expressed as a function of θ13 as in the left panel of Fig. 1.

To reveal the features of the appearance degeneracy and to understand its relationship
to the θ23 and θ13 intrinsic degeneracies, let us do the following exercise. Suppose that the

3 Our definition of the A functions differs from that of reference [13].
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true values of the parameters are at sin2 θ23 = 0.4, sin2 θ13 = 0.02, and δ = 40◦ as indicated
by the black star in the left panel of Fig. 1. If we know θ13 exactly we have a clone solution

at sin2 θ
(2)
23 = 0.5, sin2 θ

(2)
13 = 0.02, and δ(2) = 140◦, as indicated by the blue star. This is

nothing but an example of the θ23 intrinsic degeneracy. Notice that δ
(2) = π− δ as it should

be in vacuum. Whereas if we know θ23 exactly we have the third solution shown by the red

star in Fig. 1 at sin2 θ
(3)
23 = 0.4, sin2 θ

(3)
13 = 0.0255, and δ(3) = 146◦, an example of the θ13

intrinsic degeneracy.4

The fact that each degenerate solution is able to reproduce the measured quantities
(P ≈ 0.02, P̄ ≈ 0.025 in this particular case) can be easily seen if we use the bi-probability
plot in P − P̄ space [23]. In the right panel of Fig. 1 the three bi-probability ellipses
corresponding to the three degenerate solutions (the true point and two fake clones) are
drawn by using the same color as used in the left panel.5

FIG. 1: Left panel: Set of points in the sin2 θ13-sin
2 θ23 plane which simultaneously give P (νµ →

νe) ≈ 0.02 and P (ν̄µ → ν̄e) ≈ 0.025 in vacuum, for Eν = 1 GeV and L = 295 km. Each point in the

curve corresponds to a different value of δ. Larger stars on the curve mark the points corresponding

to the θ23 and θ13 intrinsic degeneracy solutions. Small stars indicate values of δ in steps of 10◦,

from 40◦ to 140◦. Notice the accumulation of points δ = 80◦, 90◦, and 100◦ near the tip of the

“tusk”. Right panel: The bi-probability plot in P (νµ → νe) vs. P (ν̄µ → ν̄e) space. The points

with large stars on the curve in the left panel correspond to the ellipses with the same color in the

right panel. The dotted curve is the smallest ellipse that can be drawn through these points.

4 A similar description with figures like Figs. 1 and 2 of how appearance and disappearance measurements

can solve the θ23 disappearance “octant” degeneracy appeared in [24]. The correlation between θ13 and

θ23, which has been noticed since early times, e.g. in [25], seems to reflect at least partly the effect of the

“tusk” shaped correlation displayed in the left panel of Fig. 1.
5 The reader may wonder about the meaning of dotted ellipse in the right panel of Fig. 1. It is the special

case with the smallest size of the ellipse. There is a unique way to draw the minimum size ellipse passing

through the measurement point (P , P̄ ). Namely, it is to place the ellipse so that its edge just touches

to the point (P , P̄ ) as marked by the cross in the right panel of Fig. 1. Since the upper-left edge of the
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2. θ23 − θ13 − δ Appearance Degeneracy is fragile

It has been recognized that the θ13- and the θ23-intrinsic degeneracies are “fragile” in
the sense that the position of the fake solutions is energy dependent so that spectrum
measurements can be used to rule them out. It is worth noting that this fragility continues
to be true for the θ23 − θ13 − δ appearance degeneracy. In Fig. 2, the position of the
appearance degeneracy is shown for different values of L/E. As can be seen, the position of
the appearance degeneracies changes as the value of L/E is varied. However, there is one
common solution for all four values L/E of the experiment, which is of course the unique
true solution. Thus, spectral information will be particularly valuable for eliminating the
fake solutions provided there is ample statistics in each of the energy bins. This may be

FIG. 2: The appearance measurement degeneracy for four different neutrino energies, from left to

right, 0.50, ∼ 0.6, 0.80 and 1.00 GeV using a baseline of 295km. The true input value (black cross)

corresponds to sin2 θ23 = 0.45, sin2 θ13 = 0.020 and δ = 30◦. The black curve for E ∼ 0.6(0.58) GeV

is special because it corresponds to the VOM for this baseline, ∆31 = π/2. Therefore, the bi-

probability ellipses are squashed to a line, and the degeneracy folds over upon itself. This figure

clearly shows that this degeneracy is “fragile” in the sense of being dependent on L/E. The vertical

blue line is given by sin2 θ13 = 0.020 and the, almost horizontal, red lines show the solutions

corresponding to sin2 2θµµ = 0.986, see next subsection. Note, that the appearance degeneracy

line for an energy of 1.0 GeV passes through both intersection points of the fixed sin2 θ13 and fixed

sin2 2θµµ constraints.

ellipse always correspond to δ = 90◦ the solution must correspond to this value of δ. Since this ellipse is

unique by definition, there is no degeneracy in this case. Therefore, the point δ = 90◦ must be at the tip

of the “tusk”, as shown by the red star in the left panel of Fig. 1.
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contrasted to the feature of disappearance “octant” degeneracy (see Sec. IIC) for which the
clone solution is L/E independent.

To close this subsection we would like to emphasize that the θ23 − θ13 − δ appearance de-
generacy, for the three parameters θ23, θ13 and δ, is a continuous degeneracy of the combined
νe and ν̄e appearance probabilities only.

C. Disappearance Channels and the θ23 − θ13 Disappearance Degeneracy

Reactor electron antineutrino disappearance experiments with baselines appropriate to
observer atmospheric oscillations, such as Daya Bay [3], RENO [5] and Double Chooz [4]
experiments, have values of L/E ∼ 0.5 km/MeV. They measure the oscillation probability
P (ν̄e → ν̄e)

P (ν̄e → ν̄e) = 1− sin2 2θ13 sin
2

(

∆m2
eeL

4E

)

+O(∆2
21) , (3)

where ∆m2
ee is the electron neutrino weighted average of ∆m2

31 and ∆m2
32 [26]. In principle

there is an octant degeneracy here for θ13 since the measurement of sin2 2θ13 does not allow
to distinguish θ13 from π/2− θ13. However, the Super-Kamiokande (Super-K) atmospheric
neutrino results [27] (|Uµ3|2 = cos2 θ13 sin

2 θ23 ≈ 1/2) imply that θ13 is relatively small (and
therefore in the first octant). This results in an unambiguous, precise measurement of θ13

sin2 θ13 ≈ 0.023. (4)

For the muon neutrino disappearance experiments at the atmospheric baseline divided
by neutrino energy, L/E ∼ 500 km/GeV, such as K2K [28], MINOS [29], T2K [30] and
NOνA [31], the muon neutrino survival probability is given by

P (νµ → νµ) = 1− sin2 2θµµ sin
2

(

∆m2
µµL

4E

)

+O(∆2
21) , (5)

where ∆m2
µµ is the muon neutrino weighted average of ∆m2

31 and ∆m2
32 [26], and

sin2 2θµµ ≡ 4|Uµ3|2(1− |Uµ3|2) = 4 cos2 θ13 sin
2 θ23(1− cos2 θ13 sin

2 θ23) . (6)

Matter effects are very small in this channel (except maybe for some neutrino factory setups),
and are ignored here.

For relatively small values of θ13, the fate of the determination of sin2 θ23 depends very
much on how close θ23 is to the maximal value. In Fig 3, we have plotted the χ2 of sin2 2θµµ
as a function of sin2 θ23 assuming an uncertainty of 1.4% for the labeled various central values
for sin2 2θµµ. Using this uncertainty the two regions start to merge when sin2 2θµµ > 0.96
and the determination of sin2 θ23 from the νµ-disappearance measurements is significantly
degraded. (The critical value which separates the two regions, of course, will depend on the
actual accuracy of the measurement.)
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FIG. 3: Left panel: Contours for the χ2 distribution in the sin2 2θµµ-sin
2 θ23 plane, where χ2 ≡

(4 cos2 θ13 sin
2 θ23(1 − cos2 θ13 sin

2 θ23) − sin2 2θµµ)
2/(σµµ sin

2 2θµµ)
2, sin2 θ13 = 0.023 and σµµ =

1.4%. Right panel: Contours for the same χ2 in the sin2 θ13 and sin2 θ23 plane, for different values

of sin2 2θµµ as indicated in each sub-panel. With the assumed uncertainty, there are two distinct

allowed bands for sin2 θ23 for values of sin2 2θµµ < 0.96, whereas the two bands start to merge for

sin2 2θµµ > 0.96. Note the small upward shift with respect to the line sin2 θ23 = 0.5 caused by

the non-zero value of sin2 θ13. In both panels, the different lines correspond to different confidence

levels as indicated in the legend. Note that the left panel corresponds to 1 d.o.f. while the right

panel is obtained for 2 d.o.f.

A measurement of sin2 2θµµ gives two distinct values of sin2 θ23 given by

sin2 θ
(1)
23 = sin2 θµµ/ cos

2 θ13 ≈ sin2 θµµ(1 + sin2 θ13) ,

sin2 θ
(2)
23 = cos2 θµµ/ cos

2 θ13 ≈ cos2 θµµ(1 + sin2 θ13) , (7)

using the convention that θµµ ≤ π
4
, i.e. sin2 θµµ ≤ 1

2
. Note, that θ

(2)
23 is always in the second

octant and for nearly all values of θµµ, θ
(1)
23 is in the first octant. However, if

sin2 θµµ >
1

2
cos2 θ13

then θ
(1)
23 is also in the second octant. This new feature of the θ23 “octant” degeneracy only

occurs if θ23 is very close to maximal and for the observed non-zero value of θ13.

For sin2 2θ23 ≃ sin2 2θµµ >∼ 0.96, the two allowed regions of sin2 θ23 merge to a unique one
which is extended to both the first and the second octants of θ23. Exactly where this occurs
depends on the systematic errors used in the disappearance measurement. An example is
shown in the right panel of Fig. 3. In this merged region, information on the value of sin2 θ23
from the appearance channels will be particularly useful.
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What is currently known about sin2 2θµµ? The recent νµ-disappearance measurement by
T2K reported sin2 2θµµ >∼ 0.97 at 90% CL (1 d.o.f.) [30, 32]. Thus, it appears that nature
has chosen to live in this merged region, on which we focus in the following discussion.

To close this subsection we would like to emphasize that this θ23 − θ13 disappearance
degeneracy (or “octant” degeneracy), for the two parameters θ23 and θ13, is a continuous
degeneracy of the νµ disappearance probability only.

D. Features of the general θ23 − θ13 − δ continuous degeneracy

In the merged region, sin2 2θµµ >∼ 0.96, we face with two kinds of continuous degeneracies:
the θ23 − θ13 − δ appearance degeneracy and the θ23 − θ13 disappearance degeneracy. In
this subsection we discuss some of the interesting features of these degeneracies and their
intersection.

In Fig. 4, the allowed regions in the sin2 θ23 − sin2 θ13 plane are shown for 2 σ CL (2
d.o.f). The vertical blue band comes from the ν̄e disappearance measurement, the almost
horizontal red band corresponds to the merged first and second octant solutions for the
νµ disappearance measurements and the dotted black band is the νµ → νe and ν̄µ → ν̄e

FIG. 4: Allowed confidence regions in the sin2 θ13-sin
2 θ23 plane at the 2 σ CL (2 d.o.f.), using

different oscillation channels, for an experiment with a baseline of 295 km and a (monochromatic)

neutrino energy of 0.8 GeV (i.e., ∆31 ∼ 3π/8). The allowed region for the appearance νµ → νe
and ν̄µ → ν̄e measurements is given by the dotted black bands. The vertical blue and (almost)

horizontal red bands indicate the regions allowed by the νe and νµ disappearance measurements

constraints on sin2 2θ13 and sin2 2θµµ. Finally, the solid black ellipses are the overlap regions for

these three types of measurements.
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appearance measurements. In all cases, the uncertainties on the measurement are assumed
to be of 1.4%, and are implemented as in Ref. [13]. This figure clearly shows the continuous
degeneracy in the sin2 θ23 vs sin

2 θ13 plane associated with the appearance and disappearance
probabilities, as well as the overlapping regions between them. One of these overlapping
regions is the true solution, while the other region is fake and will move as we vary the
neutrino energy.6

The assumed true input values for the oscillation parameters in this case are

sin2 θ23 = 0.45, sin2 θ13 = 0.020 and δ = 30◦ . (8)

This is represented in this figure by the black solid lines with the red cross in the center. The
other region which also satisfies all the measurements is located at a larger value of sin2 θ23.
Its exact position will depend on the value of L/E for the experiment, and it will be located
at a value of δ(2) = π − δ. This second solution will move up and down within the vertical
blue band between the two sets of horizontal red lines depending on the neutrino energy, as
it was shown in Fig. 2. Thus, spectral information would be very powerful in removing this
degeneracy, provided the statistics is sufficient in several well-defined energy bins.

III. EXPERIMENTAL SETUPS

Four experimental setups are considered in this work. We believe these are representative
of four different types of neutrino oscillation experiments, according to their values of L/E.
As it stands, the nature of the four settings to be examined is not intended for a performance
comparison between the different setups but to illuminate their characteristic features based
on different physical principles:

1. Narrow band beams operating at the first VOM, ∆31 ∼ π/2. The beam is aimed to
the detector at an off-axis location, so that the flux is very narrow in energy, centered
around the first VOM. This is the case of T2K [33] and NOνA [31], for instance. In this
work we will consider an upgrade of T2K, which is usually referred to T2HK [14]. It will
use the same beamline as T2K uses, aiming instead at a 560 kt fiducial volume water
Čerenkov detector Hyper-Kamiokande (Hyper-K) to be placed at the same distance
(295 km) and off-axis angle (2.5◦) as Super-K.

6 These two solutions, which stem from the appearance degeneracy, could have been misunderstood as a

consequence of the disappearance “octant” degeneracy, if the appearance and disappearance channels are

analyzed simultaneously to obtain the allowed regions. This can be understood from Fig. 2 as well. It

can be seen in Fig. 2 that, at sin2 θ13 = 0.02, the appearance degeneracy curve with E=1.0 GeV has two

allowed solutions for sin2 θ23: the true one (indicated by a black cross), plus an appearance clone solution

which overlaps with the disappearance (octant) clone. However, such overlap occurs only for isolated

values of the neutrino energy.
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2. Wide band beams (WBB) operating around the first VOM, i.e., ∆31 ∼ (2 ± 1)π/4.
These experiments are performed on-axis. Therefore, the beam flux is much wider as
in the previous case and as a consequence they observe not only the first VOM but
also some regions above and below it. The main advantage of this type of experiments
is that the oscillation pattern is much better reconstructed, and the statistics is much
larger since the detector is placed on-axis. Examples of these type of experiments are
LBNE [15, 34, 35] and LBNO [36]. In this work, we will consider the LBNE experiment,
which consists of a 1.2 MW beam and a 34 kt Liquid Argon (LAr) detector placed
underground, at a baseline of 1300 km from the source.

3. Neutrino beams operating below VOM, i.e., ∆31 < π/2. The Neutrino Factory (NF)
setups traditionally considered in the literature would operate in this regime, see for
instance Ref. [37]. More recently, lower energy versions have also been proposed, see
for instance [16, 38, 39], which operate in a regime much closer to the first VOM.
In this work we will consider a NF setup operating below VOM, such as the IDS-
NF setup [17], with a baseline of 2000 km and a parent muon neutrino energy of
Eµ = 10 GeV [16]. For this setup, we consider a 100 kt Magnetized Iron Neutrino
Detector (MIND).

4. Neutrino beams operating at the second VOM, i.e., ∆31 = 3π/2. This is the case of the
recently proposed ESSνSB facility in Europe [18, 19]. At the second VOM, the size of
the δ-dependent interference term between the atmospheric and the solar terms is a
factor of ∼ 3 larger than that at the first VOM, which would lead to higher sensitivity
to δ. The favorable feature is utilized in this and in the earlier proposals, e.g., in [40–
43]. Here, we consider one of the setups within the ESSνSB proposal, which consists
of a 500 kt fiducial mass water Čerenkov detector placed at 540 km from the source.
As for the beam, we will consider a 5 MW beam produced using 2.5 GeV protons.

Table I summarizes the main features of the setups considered in this work. The different
columns indicate the baseline, neutrino flux peak, beam power per year (or number of useful
muon decays, in the case of the IDS-NF), detector size and data taking period for neutrinos
and antineutrinos. Technical details used to simulate each setup, as well as the number
of events for each oscillation channel, can be found in Appendix A, together with a brief
explanation of the χ2 implementation, the inclusion of systematic errors in our analysis, the
values of the oscillation parameters and the marginalization procedure.

IV. APPEARANCE AND DISAPPEARANCE MEASUREMENTS OF θ23

Given the understanding of mutual roles played by the νe appearance and the νµ dis-
appearance channels in resolving the general θ23 − θ13 − δ degeneracy, we now discuss in
more closely their relative importance in accurate measurement of θ23, and how it depends
on the systematic errors. The answer to this question depends on the particular setup un-
der consideration. Therefore, we focus on the two typical cases, T2HK/LBNE and IDS-NF
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L (km) Detector (kt) Beam Power Ep (GeV) Flux peak (tν , tν̄)
† × 107s

LBNE 1300 LAr - 34 1.2 MW 120 3 GeV (8.25, 8.25)

T2HK 295 WC - 560 0.75 MW 30 0.6 GeV (3, 7)

ESSνSB 540 WC - 500 5 MW 2.5 0.3 GeV (3.4, 13.6)

IDS-NF 2000 MIND - 100 1021 µ±/107 sec NA 6 (9) GeV (10, 10)‡

TABLE I: Main features of the experimental setups simulated in this work. The different columns

indicate the distance to the detector, the detector technology, its mass, the beam power (or the

number of useful muon decays per year in the case of the IDS-NF), the energy at which the neutrino

flux peaks and the running time (in units of 107 seconds) for ν and ν̄ modes. Here, LAr stands for

Liquid Argon, WC for Water Čerenkov, and MIND for Magnetized Iron Neutrino Detector. Note

also that in the case of the IDS-NF the energy for the flux peak for both νe and ν̄µ (in parenthesis)

are separately indicated, since they are different. For the number of events in each oscillation

channel see Table II.
† Note that each experiment assumes a different number of operating seconds per calendar year.

LBNE and ESSνSB assume ∼ 1.7 × 107 operating sec/year, while T2HK and IDS-NF assume

1.0×107 operating sec/year. This implies that the running time for all the experiments considered

in this work is expected to be 10 calendar years.
‡While for conventional beams the running time is split between neutrino (π+-focusing) and an-

tineutrino (π−-focusing) modes, the IDS-NF setup assumes that both µ+ and µ− would run at the

same time in the decay ring. The total number of muon decays per year would be equally split

between the two polarities in this case.

in Secs. IVA and IVB, respectively. We will also comment briefly on the results for the
ESSνSB experiment. In Sec. IVC we discuss the relationship between errors of sin2 θ23 and
sin δ using the appearance measurement only.

We note that the issue of mutual role by the appearance and disappearance channels for
θ23 determination has been addressed, e.g., in [44–46]. More generally, the sensitivity to
θ23 has been discussed, though from somewhat different point of view, by many authors.
The analyses from early to recent times include, for example, Refs. [12, 24, 47–54] (see also
Refs. [55–57] for some results of global fits on the determination of θ23).

A. Relative importance of appearance and disappearance channels for facilities

sitting at the first VOM: T2HK and LBNE

In this subsection we discuss the precision that can be achieved for a measurement of
sin2 θ23 with the disappearance and/or the appearance channels for facilities sitting at the
first VOM, and discuss their dependence with the systematic errors. The results of the

13



analyses are presented in Fig. 5 and Fig. 6 for the T2HK and LBNE setups, respectively. In
both figures, we show the precision attainable for a measurement of sin2 θ23 as a function of
the true value of sin2 θ23 itself, where left and right panels show the results under different
assumptions for the systematic errors. In the left panel we use our default values (∼ 5−10%),
while more conservative values are assumed for the right panel (∼ 10−15%). See Appendix A
for a more precise specification of the systematic errors and the way these are implemented
in our analysis.7

As it can be seen from the figures, not only the absolute sensitivity to sin2 θ23 but also
relative importance of νe appearance and νµ disappearance measurement on the determina-
tion of θ23 depend very much on the size of the systematic errors. It is notable that not only
this feature but also the absolute sensitivities to sin2 θ23 (for our default systematic errors)
are very similar between the T2HK and LBNE setups, despite their very different beam
profiles and detector technologies. Yet, one observes that the LBNE setup would be more
robust against the increase of systematic errors, probably because of its wide band beam. 8

It is also quite noticeable the very different dependence of the results for the different
oscillation channels with the true value of θ23. The results obtained through the appearance
channels present very little dependence with this parameter for both LBNE and T2HK.
On the other hand, the disappearance results present a very particular shape, with two
very sharp peaks. This is due to the disappearance degeneracy (see Sec. II): for values of
θ23 close to maximal mixing the two solutions merge and the size of the confidence region
is consequently worsened; the “valley” in the middle of the two peaks corresponds to the
point where the two solutions lie exactly one on top of the other and therefore the precision
is slightly improved. We can identify, generically, the following three regions with different
characteristics. We note, however, that the exact locations of the boundaries between regions
depend on the systematic and the statistical errors:

Region I: In the two regions where sin2 θ23 <∼ 0.46 or sin2 θ23 >∼ 0.55, the νµ disappearance

measurement has the leading power to determine sin2 θ23 very accurately, apart from
the disappearance “octant” degeneracy.

Region II: In a limited region inside 0.46 <∼ sin2 θ23 <∼ 0.55, excluding a small region

around sin2 θ23 = 0.5, the νe appearance measurement can constrain sin2 θ23 better
than the disappearance one. For particular combinations of the systematic errors in
the appearance and disappearance channels this region may be absent, though (see

7 The size of the expected systematic errors for future neutrino oscillation experiments can be a controversial

subject, and is currently under study. For T2HK we have used the systematic uncertainties based on the

HK LoI [14], and for LBNE they fall approximately within the same ballpark as those considered by

the collaboration (see e.g., Ref. [15]). We note that the systematic errors for νe appearance measurement

currently examined by the Hyper-K working group [58] are more optimistic than our default values. In this

case the appearance sensitivity (solid line) in the left panel in Fig. 5 would supersede the disappearance

one around sin2 θ23 ∼ 0.49 and sin2 θ23 ∼ 0.54, recovering Region II.
8 Similar conclusions were obtained in Ref. [59] for different observables.
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FIG. 5: Expected precision for sin2 θ23 at 1σ (1 d.o.f.) as a function of the true value of sin2 θ23
for the T2HK setup. The left and the right panels correspond to our reference (∼ 5 − 10%) and

conservative (∼ 10 − 15%) sets of systematic errors, respectively. See App. A for more precise

specification of the reference errors. The true value of δ is taken as 80◦.

for instance left panel in Fig. 5). The precise boundaries of this region with regions I
and III (see below) depend very much on the size of the systematic errors, as one can
see from Fig. 5.

Region III: For values of sin2 θ23 very close to maximal a third region appears, in which
the disappearance measurement again supersedes the appearance measurement. As
explained above, this is due to overlapping of the two clones when they are very close
to maximal mixing.

Overall, one can see from Figs. 5 and 6 that νe appearance and νµ disappearance measure-
ment cooperate to determine sin2 θ23 very accurately, with a 1σ uncertainty 0.02 − 0.03,
or ∼ 5% level, which is comparable to the possible ultimate accuracy for sin2 θ13 expected
from reactor experiments. If θ23 is in Region I the error may be even smaller. We note,
however, that Regions II and III are the ones to which the experimental results seem to be
converging [30].

B. Appearance vs. disappearance channels in Neutrino Factory setting

The relative importance of appearance and disappearance channels in determination of
θ23 is quite different for the IDS-NF setup. As shown in Fig. 7 Region III does not exist in
this case, while Region II is quite wide, 0.44 <∼ sin2 θ23 <∼ 0.59. Since the setting we consider
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FIG. 6: Same as in Fig. 5, but for the LBNE setup.

for the neutrino factory is off VOM, the disappearance measurement is not as powerful
as for facilities sitting at the first VOM like T2HK or LBNE. Also, note that the general
features shown in Fig. 7 are rather robust against variation of the systematic errors in the
disappearance channel within a reasonable range, since for the NF this channel is mainly
limited by being off-peak.

Finally, we have also examined the ESSνSB setting with a baseline of 540 km. Unfortu-
nately, neither the disappearance nor the appearance measurement have sufficient statistics
to determine sin2 θ23 with a comparable accuracy to any of the other settings discussed above.
For example, the appearance only measurement can reach only up to ∆(sin2 θ23) ∼ 0.07 at
sin2 θ23 = 0.5 for various input values of δ.

C. Accuracy of measurements: sin2 θ23 vs. sin δ

Starting from simple analytical considerations, a simple expression relating the precision
achievable for sin2 θ23 and sin δ using only the appearance channel at the first VOM, was
derived in Ref. [13]:

∆(sin2 θ23) ≃
1

6
∆(sin δ). (9)

We have confirmed that this relation holds reasonably well when both observables are
computed within the same experimental setup sitting near the VOM. The results are shown
in Fig. 8 for the case of the T2HK setup. In this figure, the uncertainty on sin δ is compared
to the uncertainty on sin2 θ23 multiplied by a factor of 6. Results are shown as a function
of the value of δ itself, for sin2 θ23 = 0.50. As it can be seen from the figure, the agreement
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FIG. 7: Same as left panel in Fig. 5, but for the IDS-NF setup. All lines correspond to the assumed

uncertainty for this parameter in our default scenario (30%), while the blue band shows the impact

on the result for the disappearance channels if the systematic error on the ντ cross section is varied

between a 20% and a 40%.

between the two curves is quite good, and they show a similar dependence with the value of
δ itself, with the sole exception of the regions close to ±π/2.

The reason for the disagreement in these two regions can be partially explained by taking
into account that the function sin δ in these regions has an upper limit, while this is not the
case for sin2 θ23 in the region under consideration (i.e., around maximal mixing). Therefore,
one should expect the confidence interval in this region to be reduced by approximately
a factor of 2 for sin δ. It is also related to the Jacobian involved in the measurement of
sin δ, as partially discussed in Ref. [60]. The precision on sin δ can be computed by doing
a Taylor expansion by ∆(δ), the uncertainty on δ. To first order in the expansion, it gives
∆(sin δ) = cos δ∆(δ), which implies that ∆(sin δ) should vanish at δ = ±π

2
. When higher

order terms are included in the Taylor expansion, however, a non-vanishing result is obtained,
in agreement with the minima for the dashed curve in Fig. 8.

We have also examined whether the relation holds for different values of θ23. The quali-
tative features of the results are quite similar, but the difference between the solid blue and
the dashed red curves in Fig. 8 becomes larger: it increases by approximately a factor of
∼ 3 at δ = 0 when θ23 is varied from sin2 θ23 = 0.40 to sin2 θ23 = 0.60, while they are more
similar near the dips (δ ∼ ±π/2).
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FIG. 8: Comparison between the precision achievable for sin2 θ23 and the precision achievable for

sin δ for the T2HK setup. The solid line shows the error on sin2 θ23 multiplied by a factor of 6, while

the dashed lines show the error on sin δ as obtained directly from a simulation. The agreement

between the two curves is noticeable in most of the δ parameter space, as predicted by Eq. (9),

which was derived from simple analytical considerations in Ref. [13] for facilities sitting at the first

VOM. It should be noted that in this figure the full size of the confidence interval is plotted in

both cases, unlike for the rest of the figures in this paper where we show half of the size of the full

confidence interval.

V. DETERMINATION OF δ

Let us now explore what is the impact due to the combination of different channels
on the determination of δ. Figure 9 shows the expected precision for a measurement of
δ for the T2HK (LBNE) experiment in the left (right) panel, as a function of the value
of δ itself. Results are shown at 1σ CL, for 1 d.o.f. As one can see, the addition of
the disappearance channels is helping to get a better determination of δ, specially in the
regions around δ = ±π/2, as was already pointed out in Refs. [45, 60]. This effect comes
mainly through a better determination of the squared mass splitting in the νµ disappearance
channels, which can be understood from the fact that δ and ∆m2

31 appear together in the
appearance oscillation probability, see Eq. 1.

The left panel in Fig. 10 shows similar results for the IDS-NF setup. The improvement
on the determination of δ after the addition of disappearance channel data is remarkable
for this setup. In the right panel in the same figure we show the confidence regions at 1σ
(2 d.o.f.) projected in the sin2 θ23 − δ plane. Results are shown for the appearance channels
alone (red region, solid line), disappearance channels alone (blue region, dotted line) and
for the combination of appearance and disappearance channels (green region, dashed line).
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FIG. 9: Precision on δ (at 1σ, for 1 d.o.f.) as a function of the value of δ itself, for T2HK in the left

panel and for LBNE in the right panel. Solid lines show the results using the appearance channels

only, while dashed lines show the results from the combination of appearance and disappearance

data.

From this panel it can be clearly seen how the measurement of θ23 is coming mainly from
the appearance channel for this setup, while the accurate determination of δ stems from the
combination between appearance and disappearance data.

The last case under study in this section is the case of ESSνSB, for which the situation is
very different from all the previous cases: The much smaller number of events at this facility
would not allow to determine ∆m2

31 very precisely. Therefore, it is expected a priori that
for facilities operating at the second VOM the addition of disappearance data would be of
little help in improving the accuracy of a measurement of δ. This is confirmed by the results
shown in the left panel of Fig. 11, the precision for δ obtained from appearance data alone
(solid lines) and in combination with disappearance data (dashed lines). It is remarkable
that, in spite of a factor of ∼ 50 smaller number of appearance events in the ESSνSB than
in IDS-NF (see Tab. II) setups, the sensitivity to δ using only the appearance channels data
is comparable with each other. It is the power of placing the detector at the second VOM
where the dependence of the oscillation probability with δ is larger by a factor of three than
that at the first VOM. It leads to an extremely good CP violation sensitivity as well as
a very accurate determination of the value of δ and a reduced dependence on systematic
errors, see Refs. [19, 40, 42, 43].

Finally, in the right panel of Fig. 11 we show the confidence regions in the sin2 θ23 − δ
plane at 1σ (2 d.o.f.) that would be obtained from the combination of appearance and
disappearance data for the four facilities under study. The true values for sin2 θ23 and δ are
indicated by the black dot. In all cases, our default values have been used for the systematic
uncertainties, see App. A. The first thing that can be noticed from this plot is the very
different shape of the confidence regions for the different oscillation facilities. The ESSνSB
allowed region (dashed blue line) is rather wide in the sin2 θ23 axis, while it gives extremely
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FIG. 10: Left panel: expected precision on δ (at 1σ, for 1 d.o.f.) as a function of the value of δ itself,

for the IDS-NF setup. Solid and dashed lines indicate the results obtained from the appearance

results alone and from the combination between appearance and disappearance data, respectively.

Right panel: confidence regions in the sin2 θ23 − δ plane (at 1σ, for 2 d.o.f.) , for a particular set

of true values and for different combinations of oscillation channels, as indicated in the legend.

Results in both panels correspond to the IDS-NF setup as defined in Sec. III. It should be pointed

out that the “hole” in the confidence region obtained for the disappearance channels vanishes just

above the 1σ CL.

good sensitivity to δ. The T2HK (solid yellow) and LBNE (dot-dashed red) regions are
narrower along the sin2 θ23 axis due to the disappearance constraint, but the measurement
of δ would be less accurate. From the shape of the confidence region it can also be observed
that the disappearance degeneracy is affecting the determination of sin2 θ23. Finally, the
IDS-NF setup (dotted green) enables the most precise measurement of both θ23 and δ due
to a synergetic combination of appearance and disappearance measurements.

VI. SUMMARY AND CONCLUSIONS

Toward the completion of our understanding of the lepton flavor mixing, the right question
to pose now is how to determine θ23 and the CP-violating phase δ at the same time and how
their measurements are correlated. In this paper, we have addressed these questions. We
did it in the context of four particular setups for proposed future facilities: T2HK, LBNE,
IDS-NF, and ESSνSB. Throughout the paper we paid special attention to the interplay
between the νµ → νe and ν̄µ → ν̄e appearance channels (or their T-conjugate channels for
IDS-NF) and the νµ and ν̄µ disappearance channels.
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FIG. 11: Left panel: expected precision on δ (at 1σ, for 1 d.o.f.) as a function of the value of δ itself

for the ESSνSB setup. Solid and dashed lines indicate the results obtained from the appearance

results alone and from the combination between appearance and disappearance data, respectively.

Right panel: confidence regions in the sin2 θ23 − δ plane (at 1σ, for 2 d.o.f.), for a particular set of

true values (indicated by the black dot) and for the four setups considered in this work. See Tabs. I

and II for a precise definition of the different setups and for the expected number of events in each

oscillation channel, respectively. In this panel, all regions include data from both appearance and

disappearance channels.

In the first part of this paper, we have analyzed structure of the parameter degeneracy
which we would encounter in attempting a simultaneous measurement of δ and θ23. De-
spite the large number of previous works in the literature devoted to study degeneracies
in neutrino oscillations, we found that the θ23 − θ13 − δ degeneracy has not been discussed
in a general framework, which is mandatory if θ23 is close to maximal, as indicated by the
recent measurements. We found that the general degeneracy boils down to the appearance
and disappearance degeneracies. The former is a generalization of the θ13 and θ23 intrinsic
degeneracies, whereas the latter is a generalization of what is usually called the θ23 octant
degeneracy. Moreover, if θ23 is near maximal, the θ23 disappearance degeneracies join into
a single region, aggravating the problem. We have discussed its characteristic features and
illustrated some properties which are useful for its resolution in Sec. II.

In the second part of this work, we have discussed the issue of appearance vs. disap-
pearance measurement towards the determination of θ23 and δ, and more importantly the
interplay between them. Let us start with the measurement of θ23 by noting some of its
generic features:

• The precision on θ23 obtained from the νµ disappearance channels alone generally
shows a strong dependence on the size of the systematic errors. This is because the
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measurement is systematics dominated due to the high statistics. The error on sin2 θ23
always has a strong dependence on θ23 as well. It develops a “bowler hat” structure
in region near the maximal θ23, which stems mainly from the merging clone effect, as
we discussed in Sec. II. We find that, if θ23 is far from maximal (in Region I as defined
in Sec. IV) the disappearance measurement always surpasses the appearance one in
accuracy of determining sin2 θ23.

• On the other hand, the precision on θ23 obtained from the νe and ν̄e appearance
measurement alone has a much weaker dependence on θ23 without suffering from the
merging clone issue. The error is also less dependent on the size of systematic errors
since these channels are mostly limited by statistics instead.

We have studied the interplay between the appearance and disappearance oscillation
channels at four particular setups: T2HK, LBNE, IDS-NF and ESSνSB. Their main features
are summarized in Sec. III, while a more detailed description of the experimental setups can
be found in App. A. The expected number of events in each channel for all the facilities are
summarized in Tab. II. We observe the following:

• T2HK/LBNE: Both of these facilities have values of L/E very close to the first vac-
uum oscillation maximum (VOM). For both setups, the relative importance between
the appearance and the disappearance channels for a precise determination of θ23 de-
pends on the size of systematic errors. With reasonable estimates for the systematic
uncertainties, we find that: (1) if sin2 θ23 ≃ 0.5, the disappearance measurement gives
slightly better sensitivity to sin2 θ23 than appearance; (2) for values of θ23 close to
sin2 θ23 ≃ 0.49 and 0.55, typically, appearance measurement is more powerful than
disappearance in most cases. Despite their very different experimental setups, we find
that both the expected accuracies as well as the features due to the interplay between
the appearance and disappearance channels are very similar.

• IDS-NF: This setup would operate at an energy well above the first VOM. For values
of sin2 θ23 such that 0.45 <∼ sin2 θ23 <∼ 0.56, the accuracy in the determination of θ23
comes mainly from the appearance channels alone, while outside the mentioned interval
the measurement is mainly driven by the disappearance channels. In particular, the
precision for sin2 θ23 in the region very close to maximal mixing is worse than the one
obtained through the appearance measurement by a factor of up to 3−4. It has to do
with the fact that the value of L/E for the IDS-NF setup considered here turns out
to be rather far from the oscillation maximum. Also, the disappearance measurement
is largely affected by the systematic uncertainties on the τ backgrounds. We have
found that the above result holds as long as the systematic errors associated to the ντ
charged-current cross section remain above the 20%.

• ESSνSB: At the second VOM, the situation is quite different. In this case, the value
of L/E is tuned to maximize the impact of the interference term in the oscillation
probability in order to obtain a better sensitivity to CP violation. The price to pay is
that the sensitivity to θ23 is reduced, since it would mainly come from the precision
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measurement of the leading order term in the probability (for which a large number
of events is needed).

We have studied the interplay of the different oscillation channels also on the determina-
tion of the CP phase δ. Adding the disappearance channel generally improves the sensitivity
to δ, with the sole exception of ESSνSB. The improvement is always largest near δ ∼ ±π/2.
All the setups benefit from the addition of disappearance data mainly by a better determina-
tion of ∆m2

31, which allows cleaner discrimination of effect of δ in the appearance channels.
The size of the effect depends on various factors such as the number of events in the disap-
pearance channels and the way the systematic errors are implemented, and hence it varies
with the settings.

For both the T2HK and LBNE setups considered in this work, we find that this effect
is present to a similar degree, but more prominently for LBNE in particular outside the
region δ ∼ ±π/2. In the case of the IDS-NF setup, a great improvement is observed for the
precision on δ as well, especially at around δ = ±π/2. It is evident from the right panel
of Fig. 10 that the sensitivity to δ by the disappearance data itself is not impressive at all.
Therefore, such a significant effect on sensitivity to δ must come from the synergy effect
between the disappearance and appearance channels in the IDS-NF setup.

In the case of ESSνSB the situation is completely different. It is the unique case that
essentially no improvement on the sensitivity to δ is achieved by adding the disappearance
channel data. Yet, the precision in regions around δ ∼ 0 and ±π is remarkable, a high
sensitivity that can be competed only by IDS-NF. On the other hand, the accuracy of δ
determination at around δ ∼ ±π/2 would be comparable to those of T2HK and LBNE. See
Figs. 9, 10 and 11. It is worth mentioning that the comparable sensitivities to δ expected for
the ESSνSB and IDS-NF setups using only appearance data are achieved with much smaller
number of events (by a factor of ∼ 50) at the former, indicating the power of the detector
at the second VOM.

To conclude, we hope that the discussions given in this paper are useful to understand
the physics behind the future precision measurement of θ23 and δ, and that we will see some
of the facilities described here realized in the near future.
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Appendix A: Simulation details

The LBNE setup has been simulated following the Conceptual Design Report (CDR)
from October 2012 [35], rescaling the beam power and detector size to the values listed in
Tab. I. The neutrino fluxes correspond to 120 GeV protons. Data taking is set to a total of
10 years, equally split between ν and ν̄ modes. Migration matrices are used to account for
the mis-reconstruction of Neutral Current (NC) events as Charged Current (CC) events at
lower energies. The signal and the rest of the backgrounds are smeared in energy according
to a Gaussian with σ(E) = 0.15 ×

√
E for electron neutrinos, and σ(E) = 0.20 ×

√
E for

muon neutrinos.

The T2HK setup has been simulated as in Ref. [59]. For this setup, both signal and
backgrounds are reconstructed using the migration matrices from Ref. [61]. The beam
power is set to 750 kW, and data taking is 10 years, divided between ν and ν̄ modes as
indicated in Tab. I. Signal and background efficiencies have been adjusted to reproduce the
number of events in the HK letter of intent (HK-LoI) [14].9 We have checked that our results
for T2HK are roughly consistent with those in Refs. [14, 58]. We have also checked that,
for a reduced statistics, the results are roughly consistent with those reported by the T2K
collaboration for the determination of sin2 θ23, see Ref. [30].

Regarding the ESSνSB, several possible configurations are currently under consideration.
Here, we consider a setup in which the neutrino flux is produced from 2.5 GeV protons, and
with a baseline accurately set to the second oscillation peak. This setup is simulated as
in Refs. [18, 19]. The detector response is simulated using the migration matrices from
Ref. [62], which have been obtained for the MEMPHYS detector [63].

Finally, the IDS-NF setup considered here has been optimized for the large θ13 scenario,
see Ref. [16]. This setup uses a MIND detector [64] placed at 2000 km from the source,
see Tab. I. The MIND response is simulated using migration matrices for all signal and
background contributions [65]. Backgrounds coming from τ decays [66, 67] have also been
included in the analysis.

Tab. II shows the expected number of events for the setups described above. The two
numbers in each column indicate the signal/background expected number of events, for a
given setup and a given oscillation channel. Detector efficiencies have already been accounted
for. In all cases, the same cross sections as in Ref. [59] have been used.

9 Note that in the HK-LoI the beam power is roughly a factor of 2 larger than the one used in this work.

Nevertheless, the running time considered was a factor of two smaller and therefore the total number of

events should be roughly the same.
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Energy range ν app. ν̄ app. ν dis. ν̄ dis.

LBNE 0.5 - 8.0 GeV 1095/314 324/208 7340/82 3873/27

T2HK 0.4 - 1.2 GeV 3984/1705 2161/1928 26237/716 19232/735

ESSνSB 0.1 - 1.0 GeV 270/85 244/82 6198/113 4128/79

IDS-NF 0.1 - 9.0 GeV 20241/476 5257/269 171133/7370 106077/3279

TABLE II: Number of events for the four setups considered in this work. The number of events for

the signal/background component are given separately for each oscillation channel within a given

setup, and detector efficiencies have already been accounted for. These event rates correspond to

the following set of oscillation parameters: θ12 = 32◦, θ13 = 9◦, θ23 = 45◦, ∆m2
21 = 7.6× 10−5 eV2,

∆m2
31 = 2.45× 10−3 eV2 (normal ordering of neutrino masses).

Appendix B: The χ2 and implementation of systematics uncertainties

All results in Secs. IV and V have been obtained using GLoBES [68, 69]. The implemen-
tation of systematics has been done using a modified version of GLoBES, as in Ref. [59].
The χ2 and systematic uncertainties are implemented as follows. For each energy bin i a
contribution to the χ2 is computed as:

χ2
i (θ; ξ) = 2

(

Ti(θ; ξ)−Oi +Oi ln
Oi

Ti(θ; ξ))

)

, (B1)

where Oi stands for the observed (true) event rates, and

Ti(θ; ξ) = [1 + ξφ,i] sν,i(θ) + [1 + ξbg,ν,i] bν,i

+
[

1 + ξφ,i + ξν̄/ν
]

sν̄,i(θ) + [1 + ξbg,ν̄,i] bν̄,i (B2)

corresponds to the true (fitted) event rates observed in the i-th energy bin for a given
oscillation channel. Here, θ indicates the dependence on the test values for the oscillation
parameters. It should be noted that Oi depends only on the true values assumed for the
oscillation parameters, while Ti depends on the pair of values we are testing as well as on the
nuisance parameters. ξφ,i stands for the nuisance parameter associated to a combination of
flux and cross section uncertainties for the signal. We take this uncertainty to be correlated
between neutrinos and antineutrinos within the same oscillation channel. ξν̄/ν is a relative
normalization uncertainty included only in the antineutrino channels, which accounts for
the difference between neutrino and antineutrino cross section uncertainties. Finally, ξbg,ν,i
and ξbg,ν̄,i correspond to the background normalization uncertainties in the neutrino and
antineutrino channels. Note that the normalization uncertainty ξν̄/ν is correlated among all
energy bins; however, the rest of the nuisance parameters are allowed to vary independently
for each bin during marginalization to account for shape uncertainties.
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The final χ2 needs to be minimized over the nuisance parameters. It reads:

χ2(θ) = minξ

{

∑

i

χ2
i (θ; ξ) +

(

ξφ,i
σφ

)2

+

(

ξν̄/ν
σν̄/ν

)2

+

(

ξν,bg,i
σν,bg

)2

+

(

ξν̄,bg,i
σν̄,bg

)2
}

, (B3)

where the three last terms are the pull-terms (penalty terms) associated to the nuisance
parameters, and the σk are the prior uncertainties assumed for each systematic error ξk.
Unless otherwise stated, for conventional neutrino beams we set the priors on the systematic
uncertainties to the following values:

σφ = 5%; σν̄/ν = 10%; σbg = 10% . (B4)

In some cases we will show how the results change when σφ is increased to 15% (see Figs. 5
and 6). We have checked that this is the prior uncertainty which generally has the larger
impact on the results of our analysis for the LBNE and T2HK setups.

The IDS-NF, on the other hand, is less affected by systematic errors: any beam related
uncertainties will be small since the flux can be computed analytically. Moreover, the
availability of both electron and muon neutrino flavors at the near detector would allow to
determine their cross sections very precisely. We have chosen to use the same systematics
implementation (Eqs. B2 and B3) for this facility as for conventional beam experiments in
order to ease the comparison between different facilities. However, in this case we assume
that the near detector will generally do a better job cancelling systematic uncertainties and
therefore use the following priors:

σφ = 3%; σν̄/ν = 5%; σbg = 10%; στ = 30% . (B5)

Here, στ refers in particular to the prior uncertainty associated to the ντ interaction cross
section (which affects the backgrounds coming from τ contamination only [66, 67]), while
σbg is used for all the other background contributions. We have checked that the στ prior
uncertainty has the largest impact on the results for the IDS-NF setup used in this work.
Its impact on the results for sin2 θ23 is shown in Fig. 7.

Finally, marginalization is also performed over the oscillation paramteters and the matter
density. Unless otherwise stated, the following true values are assumed for the solar mixing
parameters, θ13 and the atmospheric mass splitting:

θ12 = 33.2◦ ∆m2
21 = 7.50× 10−5 eV2 ,

θ13 = 9.2◦ ∆m2
31 = 2.4× 10−3 eV2 (NH) ,

while the assumed true values of θ23 and δ will be specified in each case. NH stands for
normal hierarchy, i.e., m3 > m1. For each of the parameters which are marginalized over, a
penalty term is added to the χ2 in Eq. B3 in the same way as it was done for the systematic
uncertainties, and the global minimum is searched for.

Marginalization is always performed over the oscillation parameters not shown in each
plot, using Gaussian priors with the following 1σ errors: 3% for the solar oscillation param-
eters; a 4% for the atmospheric mass splitting; 0.005 for sin2 2θ13 and 0.08 for sin2 2θ23. The
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values chosen for the solar and atmospheric mass splitting are in agreement with the current
1σ errors from global fits, see for instance Ref. [55–57, 70]. For sin2 2θ13 we have used the
precision expected at the end of the running of Daya Bay, assuming it is limited by their
systematic error [71]. For sin2 2θ23, on the other hand, we use a value which lies roughly in
between the current precision achieved at T2K and MINOS and the T2K systematic uncer-
tainty for this parameter, see Refs. [29, 72]. Unless otherwise stated, δ is left completely free
during marginalization (i.e., no prior is assumed for this parameter). Finally, the value of
the matter density is set according to the PREM profile [73, 74],and a 2% prior uncertainty
is assumed for this parameter.
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